博客
关于我
强烈建议你试试无所不能的chatGPT,快点击我
[物理学与PDEs]第5章第5节 弹性动力学方程组及其数学结构
阅读量:7057 次
发布时间:2019-06-28

本文共 3831 字,大约阅读时间需要 12 分钟。

5.5.1 线性弹性动力学方程组

 

 

1.  线性弹性动力学方程组 $$\beex \bea 0&=\rho_0\cfrac{\p{\bf v}}{\p t}-\Div_x{\bf P}-\rho_0{\bf b}\\ &=\rho_0\cfrac{\p}{\p t}\sex{\cfrac{\p{\bf u}}{\p t}} -\Div_x({\bf A}{\bf E})-\rho_0{\bf b}\quad\sex{

{\bf u}={\bf y}-{\bf x}}\\ &=\rho_0\cfrac{\p^2{\bf u}}{\p t^2}-\Div_x({\bf A}{\bf E})-\rho_0{\bf b}, \eea \eeex$$ 其分量形式为 $$\bee\label{5_5_1:el} \bea \rho_0\cfrac{\p ^2u}{\p t^2} &=\cfrac{1}{2}\sum_{j,k,l}\cfrac{\p}{\p x_j} \sez{a_{ijkl}\sex{\cfrac{\p u_k}{\p x_l}+\cfrac{\p u_l}{\p x_k}}} +\rho_0b_i\\ &=\cfrac{1}{2}\sum_{j,k,l}a_{ijkl}\sez{\cfrac{\p ^2u_k}{\p x_j\p x_l} +\cfrac{\p^2u_l}{\p x_j\p x_k}}+\rho_0b_i\\ &=\sum_{j,k,l}a_{ijkl}\cfrac{\p^2u_k}{\p x_j\p x_l}+\rho_0b_i.  \eea \eee$$

 

 

2.  四阶张量 ${\bf A}=(a_{ijkl})$ 满足强椭圆性条件, 是指 $$\bex \exists\ \alpha>0,\st \sum_{i,j,k,l}a_{ijkl}\xi_i\xi_k\eta_j\eta_l\geq \alpha |{\bf \xi}|^2|{\bf\eta}|^2,\quad\forall\ {\bf \xi},{\bf\eta}\in \bbR^3.  \eex$$ 若 ${\bf A}$ 满足强椭圆性条件, 则称 \eqref{5_5_1:el} 为二阶双曲型方程组.

 

 

3.  对各向同性材料, ${\bf A}$ 满足强椭圆性条件 $\lra$ $$\bex \mu>0,\quad \lm+2\mu>0.  \eex$$

 

 

4.  Cauchy 问题、初边值问题的提法 (给定边界上的位移 ${\bf u}$ 或应力向量 $({\bf P}{\bf n})_i=\sum_{jkl}a_{ijkl}\cfrac{\p u_k}{\p x_l}n_j$).

 

 

5.  各向同性材料时的线性弹性动力学方程组 $$\bex \sedd{\ba{rl} \cfrac{\p^2{\bf u}}{\p t^2}=\mu\lap{\bf u}+(\lm+\mu)\n\Div{\bf u},\\ {\bf u}(0) ={\bf u}^0,\cfrac{\p {\bf u}}{\p t}(0) ={\bf u}^1.  \ea} \eex$$

 

(1)  将 ${\bf u}$ 分解为 $$\bee\label{5_5_1_Div_Curl} {\bf u}={\bf v}+{\bf w},\quad \rot{\bf v}={\bf 0},\quad \Div{\bf w}=0.  \eee$$ 则 ${\bf v},{\bf w}$ 分别满足 $$\beex \bea \sedd{\ba{rl} \cfrac{\p^2{\bf v}}{\p t^2}=a_1^2\lap{\bf v},\\ {\bf v}(0) ={\bf u}^0_L,\quad \cfrac{\p {\bf v}}{\p t}(0) ={\bf u}^1_L; \ea},&\quad\sedd{\ba{rl} \cfrac{\p ^2{\bf w}}{\p t^2}=a_2^2\lap{\bf w},\\ {\bf w}(0) ={\bf u}^0_T,\quad\cfrac{\p {\bf w}}{\p t}(0) ={\bf u}^1_T. \ea} \eea \eeex$$ 其中 $a_1^2=\lm+2\mu,\ a_2^2=\mu$. 由于 \eqref{5_5_1_Div_Curl} 分解的整体依赖性 (而非点依赖性), ${\bf u}(t,{\bf x})$ 依赖于 $$\bex \sed{

{\bf y};\ a_2t\leq |{\bf y}-{\bf x}|\leq a_1t}. \eex$$

 

(2)  $\sex{\cfrac{\p ^2}{\p t^2}-a_1^2\lap}\sex{ \cfrac{\p ^2}{\p t^2}-a_2^2\lap }{\bf u}={\bf 0}$.

 

 

6.  稳定性条件 $$\bex \exists\ \tilde\alpha>0,\st \sum_{i,j,k,l}a_{ijkl} e_{ij}e_{kl}\geq \tilde \alpha |{\bf E}|^2, \eex$$ 对 $\forall$ 对称矩阵 ${\bf E}=(e_{ij})$ 成立.

 

(1)  稳定性条件 $\ra$ 强椭圆性条件 (只要取 $e_{ij}=\cfrac{1}{2}\sex{\xi_i\eta_j+\xi_j\eta_i}$). 反之不然.

 

(2)  对各向同性材料, 稳定性条件 $\lra$ $$\bex \mu>0,\quad \kappa=\lm+\cfrac{2}{3}\mu>0.  \eex$$

 

 

 

5.5.2 非线性弹性动力学方程组

 

 

 

 

1.  ${\bf P}({\bf x})=\hat {\bf P}({\bf F}({\bf x}))=\det{\bf F}\cdot \hat {\bf T}({\bf F})\cdot {\bf F}^{-T}$ 代入动量守恒方程有 $$\bex \rho_0\cfrac{\p^2u_i}{\p t^2} =\sum_{j,k,l}a_{ijkl}(\n{\bf u})\cfrac{\p u_k}{\p x_j\p x_l} +\rho_0b_i, \eex$$ 其中 $$\bex a_{ijkl}({\bf F})=\cfrac{\p p_{ij}}{\p f_{kl}}. \eex$$

 

 

2.  强椭圆性条件: $$\bex \sum_{i,j,k,l}a_{ijkl}\xi_i\xi_k\eta_j\eta_l>0,\quad\forall\ {\bf F},\ \forall\ {\bf \xi},{\bf\eta}\in {\bf R}^3\bs\sed{

{\bf 0}}. \eex$$

 

 

 

5.5.3 非线性弹性动力学方程组的一阶守恒律形式

 

 $$\bee\label{5_5_3_ne} \bea \cfrac{\p f_{kl}}{\p t}-\cfrac{\p v_k}{\p x_l}&=0,\\ \rho_0\cfrac{\p v_i}{\p t}-\sum_j\cfrac{\p}{\p x_j}p_{ij}({\bf F})-\rho_0b_i&=0.  \eea \eee$$

 

 

1.  \eqref{5_5_3_ne} 可化为守恒律形式的一阶拟线性方程组.

 

 

2.  若材料是超弹性的, ${\bf A}=(a_{ijkl})$ 满足强椭圆性条件, 则 \eqref{5_5_3_ne} 为双曲型的.

 

 

3.  在解的间断面上应满足熵不等式 $$\bex \cfrac{\p }{\p t}\eta(U)+\sum_j\cfrac{\p}{\p x_j}q_j(U)\leq 0, \eex$$ 其中 $$\bex \eta=\cfrac{1}{2}|{\bf v}|^2+\hat W({\bf F}),\quad q_j=-\sum_jp_{ij}v_i.  \eex$$

 

 

 

5.5.4 化弹性动力学方程组为一阶对称双曲组

 

 

 

 

1.  当 $\lm+2\mu>\mu>0$ 时, 变形在自然状态附近的各向同性材料的非线性弹性动力学方程组可化为一阶对称双曲组; 也可通过构造一附加守恒律的方法化为具守恒律的一阶对称双曲组.

 

 

2.  对一般的非线性超弹性动力学方程组, 如果贮能函数是严格多凸的, 则也可化为具守恒律的一阶对称双曲组.

 

 

 

5.5.5 一维非线性弹性动力学方程组

 

 

 

 

1.  各向同性材料的纯轴向变形 $$\bex \rho_0\cfrac{\p^2u_1}{\p t^2}=\cfrac{\p}{\p x_1}t_{11}\sex{\cfrac{\p u_1}{\p x_1}}+\rho_0b_1.  \eex$$ 这是一维拟线性波动方程.

 

 

2.  各向同性材料的纯剪切变形 $$\bex \rho_0\cfrac{\p^2u_1}{\p t}=\cfrac{\p}{\p x_2}t_{12}\sex{\cfrac{\p u_1}{\p x_2}}+\rho_0b_1.  \eex$$ 这也是一维拟线性波动方程.

 

转载地址:http://joool.baihongyu.com/

你可能感兴趣的文章
UVa 679 Dropping Balls (例题 6-6)
查看>>
FileWriter写数据
查看>>
【Andorid X 项目笔记】TextView字幕效果(3)
查看>>
HDU 1002
查看>>
练习markdown语法
查看>>
python 制作自定义包并安装到系统目录
查看>>
大文件排序问题
查看>>
php实现rar文件的读取和解压
查看>>
2014年天津市第一批科技计划项目
查看>>
@芥末的糖 ---------- node连接数据库两种方式mysql和moogoDB
查看>>
MongoDB 学习笔记2----条件操作符
查看>>
关于Hibernate5.x的那点事
查看>>
sk-learn 选择正确的估算器
查看>>
python操作mysql数据库
查看>>
erp的核心代码,替代orm
查看>>
字符串--manacher算法(回文串匹配)
查看>>
[LeetCode]: 242: Valid Anagram
查看>>
项目机器在开机器的时候做好标签,汉字标注
查看>>
expr判断整数是相加的值,返回命令的返回值$? 是0,但是少数情况是1,例如1 + -1 ,$? 的结果是1 ,判断要大于1最准确...
查看>>
Matplotlib
查看>>